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Letter to the Editor

On Best Simultaneous Approximation

The purpose of this note is to communicate the statement of two theoren s
which are somewhat of a generalization of a result of Diaz and McLaughh.
[lJ. (Details will appear elsewhere.)

Let X be a normed linear space and K a subset of X.

DEFINITION. Given any bounded subset Fe X, define

d(F, K) = inf sup Ilf - k Ii.
kEK [EF

(1)

An element k* E K is said to be a best simultaneous approximation to the
set F, if

d(F, K) = sup Ilf - k* Ii·
[EF

(2)

Diaz and McLaughlin [1] and Dunham [2] have considered the problem of
simultaneous approximation of the following case: x= era, b], K a non­
empty subset of X and F = {II ,fJ. Gael, Holland, Nasim, and Sahney [3]
studied the problem of X a normed linear space, K a subset and F = {II ,j;}.

Using the same procedure as in [3], it is possible to study the problem
where

(3)

The aim here is to report the results on the same problem, where F is any
compact subset of X.

The following are the main theorems.

THEOREM 1. Let K be a finite-dimensional subspace of a strictly convex
normed linear space X. Then there exists one and only one best simultaneous
approximation from the elements of K to any given compact subset Fe X.

THEOREM 2. Let K be a closed and convex subset of a uniformly convex
Banach space X. For any compact subset Fe X, there exists a unique best
approximation to F from the elements ofK.

The proofs can be developed with the aid of the following lemmas:

187
Copyright © 1976 by Academic Press, Inc.
An rights of reproduction in any form reseTved.



188 HOLLAND, SAHNEY AND TZIMBALARIO

LEMMA 1. Let k E X and F be a bounded subset of X. Then

ep(k) = sup Ilf - k II
reF

is a continuous functional on X.

(4)

LEMMA 2. IfK is a finite-dimensional subspace ofa normed linear space X,
then there exists a best simultaneous approximation k* E K to any given
compact subset Fe X.

LEMMA 3. Let K be a convex subset of X, and F C X. If k 1 and k 2 E K are
best simultaneous approximations to F by elements ofK then

(5)

is also a best simultaneous approximation to F.

Remark. It has been pointed out by the referee that Dunham has included
Theorem 1 in one of his papers which has been recently refereed.
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